Modal Knowledge and Game Semirings
نویسنده
چکیده
The aim of algebraic logic is to compact series of small steps of general logical inference into larger (in)equational steps. Algebraic structures that have proved very useful in this context are modal semirings and modal Kleene algebras. We show that they can also model knowledge and belief logics as well as games without additional effort; many of the standard logical properties are theorems rather than axioms in this setting. As examples of the first area we treat the classical puzzles of the Wise Men and the Muddy Children. Moreover, we show possibilities for handling knowledge update and revision algebraically. For the area of games, we generalise the well-known connection between game logic and dynamic logic to the setting of modal semirings and link it to predicate transformer semantics, in particular to demonic refinement algebra. We think that our study provides evidence that modal semirings are able to handle a wide variety of (multi-)modal logics in a uniform algebraic fashion.
منابع مشابه
Knowledge and Games in Modal Semirings
Algebraic logic compacts many small steps of general logical derivation into large steps of equational reasoning. We illustrate this by representing epistemic logic and game logic in modal semirings and modal Kleene algebras.
متن کاملModal Knowledge and Game Semirings1
The aim of algebraic logic is to compact series of small steps of general logical inference into larger (in)equational steps. Algebraic structures that have proved very useful in this context are modal semirings and modal Kleene algebras. We show that they can also model knowledge and belief logics as well as games without additional effort; many of the standard logical properties are theorems ...
متن کاملAlgebraic Notions of Termination
Five algebraic notions of termination are formalised, analysed and compared: wellfoundedness or Noetherity, Löb’s formula, absence of infinite iteration, absence of divergence and normalisation. The study is based on modal semirings, which are additively idempotent semirings with forward and backward modal operators. To model infinite behaviours, idempotent semirings are extended to divergence ...
متن کاملAlgebraic Notions of Termination
Five algebraic notions of termination are formalised, analysed and compared: well-foundedness or Noetherity, Löb’s formula, absence of infinite iteration, absence of divergence and normalisation. The study is based on modal semirings, which are additively idempotent semirings with forward and backward modal operators. To reason about infinite behaviour, semirings are extended to divergence semi...
متن کاملSeparability in Domain Semirings
First, we show with two examples that in test semirings with an incomplete test algebra a domain operation may or may not exist. Second, we show that two notions of separability in test semirings coincide, respectively, with locality of composition and with extensionality of the diamond operators in domain semirings. We conclude with a brief comparison of dynamic algebras and modal Kleene algeb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comput. J.
دوره 56 شماره
صفحات -
تاریخ انتشار 2013